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I n  this paper we study the stability of long, steady, two-dimensional salt fingers. It 
is already known that salt fingers carrying a large enough density flux are unstable 
to long-wavelength internal-wave perturbations. Stern (1  969) studied the mechanism 
of this, the collective instability, and i t  was studied in more detail by Holyer (1981). 
We extend the earlier work to include perturbations of all wavelengths, as well as 
long-wavelength perturbations. By applying the methods of Floquet theory to the 
periodic salt fingers, the growth rates of perturbations are found. For both heat-salt 
and salt-sugar systems the collective instability, which can be recognized by its 
frequency of oscillation, does not have the largest growth rate. There is a new, 
non-oscillatory instability, which, according to linear theory, grows faster than the 
collective instability. We study the instabilities that  arise by using a combination 
of analytical and numerical methods. Further work will be necessary in order to assess 
the importance of these instabilities in different physical situations and to  examine 
their development as their amplitude increases. 

1. Introduction 
Over the past two decades the importance of double diffusion to transport processes 

in the ocean has been recognized. The earliest description of a double-diffusive process 
occurs in the classic paper of Stommel, Arons & Blanchard (1956), where ‘the 
perpetual salt fountain ’ is referred to  as ‘an oceanographic curiosity’. Stern (1960) 
gives the first theoretical explanation of double diffusion, and since then the subject 
has been growing. Initially all applications of double diffusion were to oceanography. 
More recently i t  has been realized that double diffusion is an important phenomenon 
in many other areas, such as vulcanology, the melting of icebergs, solar ponds, crystal 
growth, polymer solutions and stellar evolution (Huppert & Turner 1981 ; Chen & 
Johnson 1984). 

There are two double-diffusive mechanisms. The essential feature that is needed 
for double diffusion to  occur in a fluid is the presence of two components which diffuse 
a t  different rates. If the faster-diffusing component, which we shall call T, makes a 
stable contribution to the density gradient and the slower-diffusing component, which 
we shall call S, makes an unstable contribution, then salt-fingering can occur. If the 
faster-diffusing component makes an unstable contribution to  the density gradient 
and the slower-diffusing component makes a stable contribution, then an oscillatory 
instability occurs. In  this paper only the first of these two mechanisms is considered, 
namely salt fingering. 

Salt fingers have been observed in the Mediterranean outflow by Williams (1974) 
and in the North Atlantic Current by Schmitt & Georgi (1982). The observations show 
that salt fingers are confined to thin regions, about 20 cm thick, and are separated 
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by convecting regions several metres thick. This suggests that, although very long 
salt-finger motions satisfy the equations of motion, the salt fingers themselves are 
unstable and eventually breakdown into layers. 

Stern (1969) investigated the stability of long, steady, two-dimensional salt fingers 
to long-wavelength internal-wave perturbations. He shows that if the fluxes through 
the fingers are large enough then the fingers are unstable. This instability is known 
as the collective instability of salt fingers. Holyer (1981) studied this instability more 
rigorously and showed that salt fingers are unstable to long-wavelength internal-wave 
perturbations if 

where FT and F, are the heat and salt fluxes of the salt fingers, v is the kinematic 
viscosity of the fluid, and 3 and S, are the heat and salt gradients. An experiment 
was performed by Stern & Turner (1969) on a field of long salt fingers in a salt-sugar 
system. This experiment confirmed the physical existence of the collective instability 
and was in reasonable agreement with the theory. Experiments by Linden (1973) and 
Schmitt (1979) on the thin salt-finger layer that exists between two well-mixed layers 
of different temperature and salinity showed that for the heat-salt system the 
stability parameter, given by (l.l),  had values ranging from 0.2 to 1.9 in the salt-finger 
layer. Lambert €2 Demenkow (1972) carried out a similar experiment using salt and 
sugar. They found that the stability parameter had a value of approximately 0.002. 
A more careful experiment by Griffiths & Ruddick (1980) has the effect of increasing 
the parameter by an order of magnitude) but that still leaves it two orders of 
magnitude less than the theoretical prediction of (1.1). This leads one to explore the 
possibility that there is another instability present that determines the vertical extent 
of the salt-finger region. 

In this paper we study the stability of long, steady, two-dimensional salt fingers 
in an infinite fluid to two-dimensional perturbations of all wavelengths. It is expected 
that there will be no qualitative changes if three-dimensional motions are also 
considered, and it is intended that later work will look at the stability of fingers with 
a square cross-section in order to determine the quantitative changes. From the 
present study we can find, for any field of salt fingers, the perturbation with the 
maximum growth rate, and its corresponding wavelength. We find that the collective 
instability does not always have the largest growth rate, but that other instabilities 
can grow faster. If the Prandtl number is large, then the collective instability grows 
fastest. In other circumstances the fastest-growing instability is non-oscillatory. 

The methods we use are similar to those used by Beaumont (1981), who used 
Floquet theory to examine the stability of spatially periodic homogeneous flows. It 
is already known that internal waves are linearly unstable for all amplitudes (Drazin 
1977). We show here that salt fingers are always linearly unstable, however small the 
salt-finger flux. For small fluxes the growth rates are small, and so the instabilities 
are not observed experimentally. The collective instability appears when the fluxes 
through the fingers are larger than some critical value. 

We find a new, non-oscillatory instability that grows fastest when the perturbation 
has the same period in the horizontal as the salt fingers. In $4 we find an analytic 
expression for its growth rate that is valid when the perturbation has a long vertical 
wavelength. The dimensionless growth rate h for a salt finger with maximum vertical 
velocity JP is 

A = - ium2 + (&2 J P 2  + iu2m4 ) t ,  (1.2) 
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where IT is the Prandtl number and m the vertical wavelength of the perturbation. 
The velocity is related to the fluxes by 

where KT is the thermal diffusivity and r is the ratio K S / K T .  In $ 5  we examine this 
instability as m varies, and show that there is a value of m for which it has a maximum 
growth rate. This instability often has growth rates larger than those of the collective 
instability, which can be recognized because the perturbations oscillate at  close to 
the internal-wave frequency. It is possible that in some experiments it is this 
instability, rather than the collective instability, that is being observed. 

This paper presents an initial study of the linear stability of salt fingers to 
perturbations of all wavelengths. For long-wavelength perturbations a t  large Prandtl 
number we verify the results of Holyer (1981) for the collective instability. We find 
the wavelength of the perturbations that gives the maximum growth rate €or the 
collective instability. We also investigate other instabilities that are present. In $4 
we examine the instabilities that are present for long wavelength perturbations, in 
particular the non-oscillatory instability. In $5 we present detailed numerical results 
for the growth rates of the instabilities. 

2. The salt fingers 
We consider motion in an unbounded region of incompressible fluid, which has a 

stable linear temperature gradient T, and an unstable linear salinity gradient S,, with 
the overall density gradient statically stable. Coordinates (x, z )  are chosen wibh x 
horizontal and z vertically upwards. Only two-dimensional motions are considered 
in this paper. A stream function lc. can then be defined by 

where u is the horizontal velocity and w is the vertical velocity. The temperature field 
T and the salinity field S' are given by 

T' = T, z+T(r , z , t ) ,  8' = 8,z+X(x,z ,  t ) .  (2 .2a,  b )  

The density field is given by 

p = po(l-(olT,-PS,)z-(uT-PS)), (2.3) 

where a and /3 are the coefficients of expansion for heat and salt, with u and /3 positive. 
In order that the density gradient is statically stable, we require that 

(2.4) 

This also ensures that the temperature gradient is stable and the salinity gradient 
unstable. 

aT, > PS, > 0. 

The two-dimensional equations of motion are then 

a a 
-v21c.+ at J($.. V2$) = (g(aT-/38)) + VV4$, 

-T+J($,T)+T,- a a@ = K ~ V ~ T ,  
at ax 

( 2 . 5 a )  

( 2 . 5 b )  
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where 

( 2 . 5 ~ )  

is the Jacobian and V 2  = a2/ax2 + a2/a.z2. The thermal diffusivity is K~ and the saline 
diffusivity is K S .  Following Holyer (1981), we non-dimensionalize using a length-scale 1 ,  
a timescale 1 2 / ~ T ,  a temperature scale 1% and a salinity scale ES,. The non-dimensional 
equations are then 

(2.6a) 

-T+J(@,T)+--= a allr V2T, (2 .6b )  

-S+J($,S)+- a alC. = 7v2s, ( 2 . 6 ~ )  

at ax 

at ax 

where (2.7) 

We look for a steady z-independent solution to  (2.6), representing the motion in 
the salt fingers. Such a solution is 

@ = - @  cosx, T = psinx, S = gsinx, (2 .8)  

1 , .  p 
where !P=-W, S=--- ,  7 W=RT!F-RsS^. (2.9) 

Equations (2.9) imply that 
Rs = 7(1 - R T ) .  (2.10) 

In  dimensional terms (2.10) determines the lengthseale, I ,  by 

V 

b g S z / K S -  crgTz/KT'  
14 = (2.1 1 )  

The amount of heat transported downwards by the salt fingers is 

where (-) denotes a horizontal average. So 
11- 

FT = - K T q T W s i n 2 X = - $ T q @ 2 .  

Similarly the amount of salt transported downwards is given by 

We then define the flux ratio (Turner 1979) by 

y = - .  EFT 

PFS 
Using (2.12) and (2.13), we obtain 

"3 K 

KT P S z .  
=__A 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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Then, by the definitions of RT and R ,  and by (2.10), we find 

-7RT - RT Y=- R, l + R T '  

173 

(2.16) 

We can find bounds on the size of y. Equation (2.4) implies that 

R ,  > R,. (2.17) 

-7 
Hence, by (2.10), we find R T > - - .  (2. IS)  

1--7 

Thus, using (2.16), we have y > -7. 

Also, since RT > 0, we have y < 1 ,  so 

1 > y > - 7 .  

(2.19) 

(2.20) 

The independent dimensionless parameters that we use here to specify the salt fingers 
are c, -7, y and @. Any other dimensionless parameters can be expressed in terms of 
these. In $ 3  we consider the stability of the fingers. 

Some comment needs to be made about the relevance of studying steady fingers. 
There are also growing salt-finger solutions to (2.6), with 

(2.21) 
where 

@ = - P ( ~ + k 2 ) ,  W =  - 8 p + - 7 k 2 ) ,  - ( A + & )  = R ~ P - R ~ L ~ .  (2.22) 

$ = - WeAt cos kx, T = peAt sin kx, .S = fleAt sin kx, 

W 
c 

Equations (2.22) then give an equation for A :  

( A  + ah2) ( A  + k') ( A  +7k2)  + g(R,(A +?k2) - Rs(h + k')) = 0. (2.23) 

If when investigating the stability of steady fingers we find growth rates that  are large 
compared with A, then the fingers will be almost steady, i.e. quasi-steady, for the time 
it takes for the perturbations to grow. So, provided we find growth rates for the 
stability of steady salt fingers that are large compared with the largest salt-finger 
growth rates obtained from (2.23), it  is appropriate to study the stability of steady 
fingers. 

3. The perturbations 
We now perturb the salt fingers by putting 

$ =-wcoSx+$(x,Z,t), 

T = Psinz+T(x,z,t) ,  

s = f?sinx+S(x,z,t). 

Substituting into (2.6) and linearizing in the perturbation quantities yields 

(3.2b) 

( 3 . 2 ~ )  
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Holyer (1981) obtained these equations and used them to study the collective 
instability of salt fingers. A scale separation was used on the above equations to 
separate the small-scale motion of the fingers from the large-scale motion of the 
internal-wave perturbations. We now show how to solve the set of equations (3.2) 
exactly, by using Floquet theory. We find solutions to (3.2) for all wavelength 
perturbations. We also obtain new asymptotic results for long-wavelength 
perturbations. 

Since the coefficients of (3.2) are independent of z and t ,  we can find solutions with 
@, T and S proportional to exp (imz+iwt). The coefficients in (3.2) are periodic in x, 
with period 27c, and hence the solutions can be written in the Floquet form 

m 

= exp (ikx+imz+iot) I= (3.3) 
n =-m 

Substituting this form of solution into (3.2) gives the following set of equations, for 
each n:  

(n+k)aRT (n+k)aR,  
iw$, = - u K ~  $, - Tn -I- Sn 

K; 

iwTn = -K", Tn+ (n+ k)  @n+$,p(T,+l- Tn-l) +$r~v(@~+~+ $ n - l ) ,  (3.4b) 

iwS, = -7KiSn + (n+ k) $n++m@(Sn+l-Sn-l) +-- (@,+, + $ n - l ) ,  ( 3 . 4 ~ )  

where K i  = (n  -t k)2 + m2. This set of equations is invariant under the transformations 
k+k+ 1 and k-t-  k, so only values of k between 0 and f need to be considered. 

m@ 

2r 

Equations (3.4) can be written in the matrix form 

iwx = AX (3.5) 

where x is the column vector (. . .$n-l TnPl SnPl @, Tn S,. . .)T; A is the infinite matrix 
obtained from (3.4) and is a function of cr, 7 ,  y ,  W ,  k and m. Equation (3.5) specifies 
the infinite-matrix problem for the eigenvalues iw = h and the eigenvectors x. This 
equation cannot, in general, be solved analytically. I n  order to solve it for all (T, r ,  y ,  m, k and m, we truncate the system (3.5) at some order N ,  so that $ n ,  Tn and S,  
are all assumed to be zero for In1 > N .  The number N is chosen to be large enough 
that if N is increased by 1 then the eigenvalue with the largest real part does not 
change by more than lo-*. The manipulations to solve (3.5) were then programmed 
in Fortran on Bristol University's Honeywell system using routines from the NAG 
library. If, on solving (3.5), we find that the eigenvalue with the largest real part has 
positive real part then the flow in unstable, and if it has a negative real part the flow 
is stable. 

In  $ 5  we shall discuss the results obtained from this numerical scheme. First, 
however, we shall look at how this work can be compared with that of Holyer (1981) 
and we also obtain some new analytical results for long-wavelength perturbations. 
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4. Long-wavelength perturbations 
Holyer (1981) studied the linear stability problem (3.2) by considering perturbations 

that varied over a long horizontal scale and by separating the long-lengthscale motion 
from the short-lengthscale motions which are forced by the presence of the salt fingers. 
The analysis performed in Holyer (1981) is formally equivalent to truncating (3.5) 
at order one, i.e. N = 1. The long-lengthscale perturbations are proportional to 
exp (ikx+ imz+ iwt), and the short-scale motions forced by the fingers are proportional 
to exp (i(k& 1) x+imz+ iwt). This drastic truncation of (3.5) gives solutions to  the full 
problem (3.2) only if $,, T, and S, are negligible for In1 2 2, i.e. if they are small 
compared with $o,$l,l/l-l etc. This is only the case if p2 = KE = k2+m2 + 1. By 
solving (3.5) numerically we can compare solutions obtained from the first-order 
truncation with the numerical solutions that can be found for larger values of k and 
m. Holyer (1981) only looked for solutions with iw of zeroth order in$. I n  this section 
we obtain some new solutions that were not found in the earlier paper. I n  $5  we verify 
that the solutions that are found from the truncation can also be found from 
numerical solutions to the full equations (3.5). 

Performing the first-order truncation on (3.5) gives 

( 4 . 2 ~ )  

This truncation will give results close to the exact results for p2 + 1. 
I n  Holyer (1981) solutions to (4.1)-(4.3) were found by assuming iw = O(l),  

k /m = O( 1) and rr 9 1. The collective instability of salt fingers, first studied by Stern 
(1969), was then obtained. This gave instability if 

/3FS--FT pa >- - - w 2  

2a(R,-Rs) v(aTz-/3Sz) 3m2 (4.4) 
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Hence for the collective instability the perturbation is agrowing oscillatory instability, 
oscillating at close to the internal-wave frequency. 

We now look for additional solutions to (4.1)-(4.3). The Prandtl number 0- is no 
longer assumed to be large. First we note that when m = 0 we can solve (3.5) exactly, 
for salt fingers of any amplitude W. In  this case the salt fingers already present do 
not interact a t  all with the growth of any perturbations. (This is most easily seen 
by setting m = 0 in (3.4).) Then, for each n,  we obtain the equation 

a(n + k ) 2  
h3 + h2Ki(a+ 7 + 1 )  + h Kh(0-7 + a+r) + (RT - Rs)) + ar(K6, - ( n  + k)') = 0, 

K", 
(4.6) 

where h = iw. This is the standard equation for the growth of salt fingers in an infinite 
region of constant gradients (Turner 1979). Equation (4.6) can be shown to have no 
unstable oscillatory solutions (assuming R, > Rs > 0). There are unstable, growing, 
salt-finger solutions if 

Since 0 < k < t this inequality can be satisfied only if n = 0 or n = - 1 .  If k is small 
then the unstable solutions to the cubic (4.6) are 

( n + k ) f  > (n+k)2 .  (4.7) 

rk2 
A =  +O(k3)  when n = 0, 

RT-R, 

47k 
(ii) A =  +O(lc2) when n = -1 .  

-+--gRT 7 Rs 
0 - 7  

(4.9) 

(4.9) 

It can similarly be shown that if W and ,u are small, with W = O b ) ,  then there are 
two unstable solutions to (3.5) : one with 

+ Ocu.2). 
47k 

and the other with A =  
-+--7RT 7 Rs 
a 7  

(4.10) 

(4.11) 

We now look a t  solutions of the truncated set of equations (4.1)-(4.3). We suppose 
k / m  = 0(1) and p2 6 1 and look for a solution h = O(p) ,  unlike Holyer (1981), who 
looked for solutions with A = O( 1 ) .  We do not need to assume that the Prandtl number 
u is large. If we eliminate T, and 8, from (4.1) and T-, and S-,  from (4 .2)  and work 
to lowest order in p, we obtain 
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Then substituting into (4.3) gives 

RT TO = R, (4.15) 

(4.16) T(AS, - k$o) = AT, - k$,, 

m2W2 -+A- 7811) (; : 
[A(7RT %- R, S,) -4k~$,]. (4.17) AT, - kt,ho = 

A2 (; -+-- ? 7RT)'- 16k2r2 

These can be combined to give 

(4.18) 

If A2 > 0 then the system is unstable. Hence the system is unstable if 

(57+(RT-Rs) < 16k2r2(RT-RS). (4.19) 

If W = 0 then (4.18) reduces to 

(4.20) 

The positive value for A obtained from this is the same as that given by (4.11). This 
instability, with the condition for instability given by (4.19), shows how the addition 
of the salt-finger motions modifies the instability that is present when @ = 0. It is 
the modification of the salt-finger stability problem in an already-present salt-finger 
field. 

If we look a t  solutions of (4,1)-(4.3) with iw = 0(p2) we might expect to obtain 
(4.10) when l? is small, and some modification to  (4.10) if @ is larger. If k/m = 0(1),  
p2 < 1 and A = 0(p2)  then 

= rS1 = el, T-, = TX-,, = 

Substituting into (4.3) gives 

R,  To = R, S o ,  

( A  +p2)  - k$, = ~ ( h  + 7p2) 8, -Tkt,ho, 

These give 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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If W = 0 then (4.27) reduces to (4.10). The solution (4.27) is unstable if 

(4.28) 

The instabilities we have looked at  so far have been modifications to the basic 
salt-finger problem. They provide useful checks for the numerics in $ 5 ,  but they are 
already well-understood instabilities. We now, however, find an instability with a new 
form, by looking for a solution with k = 0. Putting k = 0 in (4.1) and (4.2) and 
eliminating T,, S,, T-, and S-,, we find 

($1 +$-I) = mW(RT T,(h+71u!)-R,Xo(h+ru~)), (4.29) 

($,--$-1)P = m f l w , ,  (4.30) 

( 4 . 3 2 ~ )  

+ So R,(h + 2 + m2) ( A  +pi)]  (4.32 b)  

( A  + 7m2) So = -m2W2 [ so(P+ (: + 2 + mZ)(A + &) R,) 
2P(h + 7&) 

Using the assumption that m2 < 1, then 

('4. 1 (4.33a) 
1 

P =  - ( h 3 + h 2 ( ~ + 7 + l ) + h ~ ) + h  --7RT , 
U 

(4.336) 1 Rs R = - ( h2 + h (0- + 7 + 1 ) + 7 )  + - - 7RT, 
0- 7 

so P = hR. (4.34) 

We see from (4.32) that there are two different types of solution that occur when 
k = O :  

either ( a )  @o = 0 and T, # 0 and So # 0, 
or ( b )  T o = X o =  0 and $ o # O .  

For case (a )  the solutions are stable oscillations, and since they are stable they are 

For case ( b )  T, = So = 0, and ( 4 . 3 2 ~ )  gives 
not of interest here. 

(4.35) 
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FIGURE 1. Streamlines for the salt fingers and the non-oscillatory perturbation, obtained from 
the stream function (4.38). 

Hence h = - i(rm2 +_ (id I% + t(r2m4)2. (4.36) 

By selecting the positive sign in (4.36) we have a non-oscillatory solution with ‘a 
positive growth rate. Note that although we have assumed m2 < 1, it is consistent 
to  have terms of order m and order m2 in (4.36), provided that am/W = O(1). We 
also find that 

(4.37) 

This is a new instability. In  95 we find that its growth rate can be larger than that 
of the collective instability. The stream function for this perturbation is given by 

9 = - W c o s z -  WAsinxsinmz+ WBcosmz, (4.38) 

(4.39) 

I n  figure 1 we show the stream function when A = 0.5 and B = 0.14. These values 
imply that mn/@ = 1.5. Note that the vertical scale in the figure is compressed, 
because m is small. Recirculating regions start to grow where the shear in the salt 
fingers is a maximum, and where the velocity is zero. 

5. Numerical results 
We are now in a position to look a t  the solutions of (3.5) for the growth rates A ,  

and to relate them to the various analytic results found in $4,  We display selected 
numerical results. 

= 10 and T = 0.01. We choose 
the flux ratio y to be 0.5, which is close to the value found experimentally. If we 

First we consider a heab-salt system, where we take 
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0.1 0.2 0.3 0.4 k 
FIGURE 2. Perturbation growth rate plotted against k, for u = 10, 7 = 0.01, m = 0 and y = 0.5. 

The solid line is the solution of (3.5). The dashed line is the approximate solution (4.9). 

x 
0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

I I I I I 
0.1 0.2 0.3 0.4 0.S m 

0 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

I I I I I 
0.1 0.2 0.3 0.4 0.S m 

0 

FIGURE 3. Perturbation growth rate plotted against m, for u = 10, r = 0.01, k = 0, y = 0.5 and 
Ff' = 4. The solid line is the solution of (3.5). The dashed line is the approximate solution (4.36). 

look a t  perturbations with m = 0 (i.e. no vertical variation) then there is no 
interaction with the salt fingers, and the growth rates are independent of the finger 
amplitude @. We show in figure 2 a comparison between the largest growth rate 
obtained by solving the matrix equation (3.5) with the approximate solution (4.9). 
This growth rate is independent of @. The solution displayed in (3.5) is exactly the 
solution of the cubic equation (4.6) with n = - 1. This instability is simply salt fingers. 
Their maximum growth rate is 0.00304, which occurs when k = 0.30. As explained a t  
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Re 0) 

2 x  10-7 

181 

FIGURE 4. Perturbation growth rate for the collective instability plotted against @, for CT = 10, 
7 = 0.01, k = m = lop4 and y = 0.5. 

the end of $3, we are interested in instabilities with larger growth rates. In  figure 3 
we show a comparison between the largest growth rate obtained from solving (3 .5)  
with the equation (4.36) for perturbations with k = 0. The results are displayed for 
@ = 4. There is a maximum growth rate of 0.45, which occurs when m = 0.30. Figure 4 
shows the real part of the growth rate h for the collective instability when 
k = m = for the heat-salt system. According to the theory of the collective 
instability (see (4.4)), in the present case marginal stability should occur when 
W = 3.61. In fact we see from figure 4 that it  occurs when @is about 10.5. The theory 
of Holyer (1981) assumes that r~ 9 1 and ak2(RT--R,)/,u2 B 1 ,  as well as p2 < 1. It 
appears that for the heat-salt system the first two of these conditions do not hold. 
If k and m are decreased even further the collective instability still first appears a t  
the same value of @. From the results that  we have looked at ,  it appears that the 
growth rate of the collective instability, obtained from the linear stability analysis, 
is never the largest growth rate present for the heat-salt system. The largest growth 
rate for the heat-salt system seems to be that from the non-oscillatory instability 
with k = 0. When W = 4, so that (PFs-aFT)/v(aT,-/3S,) = 0.82, the largest growth 
rate is 0.45, which in dimensional terms is 0.45 [( 1 - y)/uy]h (agT,): = 0.1432 (agT,):. 
The growth rate of the collective instability is always smaller by a t  least a factor of 
10. 

We shall now look a t  a salb-sugar system, which is used for many laboratory 
experiments. We take u = 1000, r = 5, and we choose y = 0.91, to be consistent with 
values obtained experimentally. Figure 5 shows a comparison between the largest 
growth rate obtained from solving (3 .5)  with the approximate solution (4.9) when 
m = 0. It is equivalent to figure 2 for the heat-salt system. The maximum growth 
rate is 0.0187, and occurs when k = 0.25. In figure 6 we show a comparison between 
the largest growth rate obtained from solving (3.5) with the equation (4.36) for 
perturbations with k = 0. The results are displayed for v =  100, Le. 
(j9Fs-aFT)/v(aT,-/?S,) = 0.78. The largest growth rate is 3.89, and occurs at 
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FIGURE 5. Perturbation growth rate plotted against k, for u = 1000, 7 = j, m = 0 and y = 0.91. 
The solid line is the solution of (3.5). The dashed line is the approximate solution (4.9). 
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FIGURE 6. Perturbation growth rate plotted against rn, for u = 1000, 7 = 4, k = 0, y = 0.91 and 
= 100. The solid line is the solution of (3.5). The dashed line is the approximate solution (4.36). 

m = 0.15. In dimensional terms this is 3.89 [(1 - y ) / cy ] :  (ccgT,): = 0.039 (agT,):. In 
figure 7 we show the growth rates for the collective instability when k = m = 0.01. 
In this case the theory for the collective instability gives marginal stability for 
w = 92.43. We see from figure 7 that the transition happens when @ = 95.2. We have 
investigated the collective instability for many values of k and m, when @ = 100. The 
largest growth rate for the collective instability is 1.29, and it occurs when k = 0.05 
and m = 0.09. For the salt-sugar system, when = 100, the largest growth rate 
happens when k = m = 0.5. A t  this point A = 5.8 + 39.8i. This instability is probably 
responsible for the small-scale varicose oscillations that are seen on salt fingers in the 
laboratory. The frequency of these oscillations is not close to the internal-wave 
frequency, which is 56.6. The largest growth rate for the non-oscillatory instability, 
when If' = 100, is 3.89 and occurs when k = 0 and m = 0.15. 

As well as looking at the heat-salt and salt-sugar systems, we have also considered 
solutions of (3.5) when cr = lo4, 7 = 0.01 and y = 4. For this case the Prandtl number 
is sufficiently large that the theory of Holyer (1981) is applicable. In figure 8 we show 
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FIGURE 7 .  Perturbation growth rate for the collective instability plotted against W ,  for 

u = 1000, T = 4, k = m = 0.01 and y = 0.91. 
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FIauRE 8. Perturbation growth rate plotted against @, for u = lo4, 7 = 0.01, 
k = m = 0.01 and y = 4. 
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the growth rate for the collective instability when k = rn = 0.01. The growth rate now 
agrees closely with the predictions of Holyer (1981). Marginal stability occurs when 
v = 80.42. Provided that is larger than this value, then the collective instability 
has the largest growth rate. 

6. Conclusions 
We have investigated the linear stability of long, steady, two-dimensional salt 

fingers to two-dimensional pertubations of all wavelengths. Since the basic salt-finger 
state is spatially periodic we used Floquet theory to determine the growth rate of 
perturbations. The numerical results we obtained agree with the analytic results of 
Holyer (1981) for large Prandtl number and long-wavelength perturbations. The 
addition of perturbations of all wavelengths shows that the collective instability, 
where the perturbation oscillates at the internal wave frequency, does not have the 
largest linear growth rate for either the heat-salt system or the salt-sugar system. 
The collective instability has the largest growth rate only if the Prandtl number is 
very large. In addition, short-wavelength instabilities appear that may be responsible 
for the bulges and other small-scale irregularities that can be seen on long salt fingers. 

We have found, both analytically and numerically, a new, non-oscillatory instability 
of salt fingers, which has a larger growth rate than the collective instability for both 
the heat-salt system and the salesugar system. This result is true however large the 
fluxes are through the salt fingers. This new, non-oscillatory instability requires for 
its existence the periodic basic state, fluid viscosity and stratification. It starts to grow 
on the lines where the vertical velocity of the salt-finger field is zero; that is, where 
the shear is maximum. As i t  grows to large amplitude it is possible that the 
recirculating regions of flow will amalgamate and completely disrupt the salt-finger 
flow. This instability, rather than the collective instability, may limit the length of 
salt fingers growing at a sharp interface. It could provide an explanation of why 
Lambert & Demenkow (1972) found salt fingers that were limited in length by fluxes 
much less than the fluxes predicted by the collective instability theory. More work 
will be needed to investigate the nonlinear development of this instability, in order 
to establish whether it is a significant process in double-diffusive motions. 
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